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Al and Scientific Research

Tsinghua University

in J. Hopfield and Geoffrey Hinton. Ill. Niklas Elnr

Solution »
Construct D: midpoint BH [a]
[al, 0, midpoint HQ = BQ / 0,D [20]

Construct G: midpoint HC [b] ...
ZGMD = £GO,0 = M 0,G D cyclic [26] I h F Id

[al,[b] = BC/DG [30]

Construct E: midpoint MK [c]
., [e]l = ZKFC = ZKOE [104]

ZFKO,=ZFK0, = KO, //KO, [169]

https://www.nobelprize.org/all-nobel-prizes-2024
https://www.nature.com/articles/s41586-024-07487-w
David Baker, Demis Hassabis and John Jumper. Ill. Niklas EImehed © Nobel AlphaGeometry httDS www.nature.com aftides 541586-024-08148-8
Prize Outreach https://www.nature.com/articles/s41586-023-06747-5
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The Power of Math Research

Tsinghua University

® Mathematical research embodies both profound theoretical and
practical value, representing the pinnacle of human intellect.
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Math4Al: A Critical Factor

Tsinghua University

® Mathematics and code are now key to advancing large models'
reasoning capabilities.

DeepSeek-R1-Zero average length per response during training

| gptdo olimprovement
PhD-Level Science Questions 12000 -
ML Benchmarks (GPQA Diamond)
MATH 94.8 Chemistry 64.7
MathVista (testmini) 73.9 J
Physics 928 10000
MMMU (val) 78.2
MMLU 23 Biology 69.2 2
ot
T T T T T 1 T T T T T 1 o
0O 20 40 60 80 100 0 20 40 60 80 100 & 8000 1
pass@1accuracy pass@1accuracy 1
o
Exams MMLU Categories £
=
5 6000 A
AP English Lang 58.0 Global Facts 4 8.4 5
AP Physics 2 - 81.0 College Chemistry - 781 g
©
AP English Lit - 68.0 College Mathematics - 98.1 o 4000 1
<
LSAT - 95.6 Professional Law A 85.0
AP Calculus 83.3 Public Relations - 80.7
2000 A
AP Chemistry - 89.0 Econometrics 87.1
SAT EBRW A 94.4 Formal Logic 4 97.0
0 20 40 60 80 100 0 20 40 60 80 100 0 T T T T
percent raw score pass@1accuracy 0 2000 4000 6000 8000
Steps

o1: The first reasoning model trained
on math/code tasks, showing across-
the-board improvements.

DeepSeek-R1 gains deep reasoning via
verifiable math-focused RL training.

https://openai.com/index/learning-to-reason-with-Ilms ; DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948.



Al4Math: Approaching the Peak N EEE

Tsinghua University

® By 2025, top models are projected to score 145/150 on Gaokao.

Lack of sufficient image understanding capabilities leads to point loss

/
Objective Questions Single-choice Subjective Total
(Text Input) Image Questions Questions
0 145

Gemini 2.5 pro 68 77

Doubao-1.5-thinking-vision-pro 68 0 76 144
DeepSeek R1 68 / 76 144
o3 65 0 75 140
Qwen3-235b 68 / 71 139
hunyuan-t1-latest 68 / 68 136
Wenxin X1 Turbo 68 / 66 134

Note: This evaluation consists of three parts: objective questions (text input), Question 6 which is an image-based
single-choice question, and subjective questions. The objective questions (text input) section accounts for a total of
68 points, the image-based single-choice question is worth 5 points, and the subjective questions total 77 points.
The overall score is 150 points.

https://mp.weixin.qg.com/s/E1D_QA5IXwXRc6aSaU zog?scene=1



Al4Math: Approaching the Peak

® o04-mini achieves expert-level proficiency on frontier math problems.

AIME 2024 AIME 2025
Competition Math Competition Math
873 91.6 93.4 865 88.9 927
79.2 ()
74.3
3 >
e Y
35 >
$ IME: American Invitational
Mathematics Examination
. Y} Q9 @
o (b,((\\o \,Oo\a \,Oo\a ° 656\\(\\ 0\90\6 0\90\6
(o) %\(\0 \&(\0 {b@ \\(\
o é‘\\(‘ [e} é\\
ob( 0‘)‘

T don’t want to add to the hysteria, but
in some ways these large Ilanguage

models are already outperforming most
of our best graduate students in the

world. ” -- Ken Ono

o4-mini outperforms the average team of mathematicians on our Z EPOCH Al

FrontierMath human baseline competition

B o4-mini medium M@ Human teams

o04-mini medium

FrontierMath

Average team

All teams

I I I I I
20% 40% 60% 80% 100%

Problems correct

Competition problems are taken from a non-random subset of FrontierMath and tailored to the background knowledge of
contestants. Participants were grouped into 8 human teams with 4-56 mathematicians each. The "All teams" score is determined by
looking at how many problems were correctly answered by at least one team, though note that each team only attempted around

10 out of 23 problems on average.

CC-BY epoch.ai

https://www.scientificamerican.com/article/inside-the-secret-meeting-where-mathematicians-struggled-to-outsmart-ai/ ; https://epoch.ai/gradient-updates/is-ai-already-superhuman-on-frontiermath ;
https://epoch.ai/gradient-updates/beyond-benchmark-scores-analysing-o3-mini-math-reasoning ; https://openai.com/index/introducing-o03-and-o4-mini/

Tsinghua University




AIME: High School Competition

Tsinghua University

® The AIME dataset derives from a competition (AIME) for high school
students that helps select the U.S. team for the IMO.

Problem Structure

« 15 progressively difficult
problems

« Answers are integers
from 0-999

Limitations

* Predetermined unique
solutions

« Focuses primarily on
" small” techniques

-

o

~

Problem

The 9 members of a baseball team went to an ice-cream parlor after their game. Each player had a single scoop cone of chocolate, vanilla, or
strawberry ice cream. At least one player chose each flavor, and the number of players who chose chocolate was greater than the number of
players who chose vanilla, which was greater than the number of players who chose strawberry. Let N be the number of different assignments
of flavors to players that meet these conditions. Find the remainder when N is divided by 1000.

Solution 1

Let ¢ be the number of players who choose chocolate, v be the number of players who choose vanilla, and s be the number of players who
choose strawberry ice cream. We are given two pieces of information ¢,v,s > landc+v 4+ s = 9.

By inspection the only solutions for (¢, v, s) are (2, 3,4), (1, 2,6), (1,3,5).

Now we must choose which player chooses which flavor. For the general case (c, v, s), we begin by choose c of the 9 players who eat
chocolate, then we choose v of the 9 — ¢ players who vanilla, after this the amount of players who eat strawberry is fixed. Therefore the general

formula is .
c v

Therefore our final answer is,

/

https://artofproblemsolving.com/wiki/index.php/2025 AIME | Problems/Problem 3 ; https://zh.wikipedia.org/wiki/SEE#FEEE



AIME: High School Competition NS

Tsinghua University

SOTA models primarily train and test on verifiable practice problems
and math competition questions, similar to AIME’ s data distribution.

The problem requires finding all integer bases b > 9 such that 17; divides 973, and then summing those bases.

t 17, and 97, to base 10:

DeepSeek-R1 successfully solves

e 17, =1-b+7=0b+T7
e 97, =9-b+7

the first problem in AIME 2025

The condition that 17, divides 97, means that b + 7 divides 9b + 7, or (b+ 7) | (96 + 7).
Setd = b+ 7,s0b = d — 7. Substitute into 9b + 7:

9%+7=9(d—-7)+7=9d—63+7=9d— 56

« Problem: Find the sum of all integer
bases b > 9 for which 17, is a divisor of 97,

The condition becomes d | (9d — 56). Since d | 94, it follows that d | (9d — (9d — 56)) = d | 56.
Given b > 9, it follows thatd = b + 7 > 16. Thus, d must be a positive divisor of 56 greater than 16.
The positive divisors of 56 are 1, 2, 4, 7, 8, 14, 28, and 56. The divisors greater than 16 are 28 and 56.

o Ifd=28,thenb =28 —7=21.
o Ifd=56,thenb =56 —7=49.

« Complexity: Simple and no advanced
concepts required

Both bases satisfy b > 9. Verify the division condition:

» Forb=21:
° 1721:121+7:28
0 9791 =9-21+7=189+7 =196
o 196 = 28 = 7, which is an integer.

o Forb =49:
o 1749=1-49+7 =56
0 9749 =9-49+4+7=441+417 = 448
o 448 < 56 = 8, which is an integer.

« Reasoning Length: Solvable within brief
deductive steps

« Assessment Focus: Core emphasis on
applied problem-solving techniques

Both bases are valid, and there are no other bases b > 9 that satisfy the condition. The digits in both numbers are valid since
b > 9 implies b > 9 for digit 9 in 97, and b > 7 for digit 7 in both numbers.

The sum of the bases is 21 + 49 = 70.

\boxed{70}



The Challenging FrontierMath

Tsinghua University

® Authored and endorsed by professional mathematicians (including
Terence Tao), FrontierMath exhibits extremely high difficulty.

Core Features e ™~

« Authored by professional
mathematicians

« Spans major modern
mathematical branches

« Requires hours per
problem for specialists

Construct a degree 19 polynomial pgm) € Clz] such that
X = {p(z) = p(y)} C P' x P’ has at least 3 (but
not all linear) irreducible components over C. Choose
p(x) to be odd, monic, have real coefficients and linear
coefficient -19 and calculate p(19).

Answer: 1876572071974094803391179

Limitations

« Predetermined solutions MSC classification: 14 Algebraic geometry; 20 Group theory and gener-
. Complexity ceilin g below alizations; 11 Number theory generalizations

research-grade problems \_ /

Glazer et al.,, 2024. FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in Al. arXiv:2411.04872.



Competition v.s. Research

Tsinghua University

Kakeya Set Conjecture in 3D

« 12 chapters with 125 pages of core arguments.

Math research requires significantly

longer and deeper reasoning. « Only the final proof is published, but the

underlying reasoning is much more extensive.

-t T 71
L e e e - =1

Volume estimates for unions of convex sets, and the Kakeya set 4 Wolff Axioms and Factoring Convex Sets %
. . . . 4.1 Definitions: Wolff axioms and covers . . . .. ................. . ..., 25
Con.]eCture m three dlmenSIOnS 4.2 Factoring Convex Sets . . . . . . . .. 26
4.3 Convex Sets and the Frostman Slab Wolff Axioms . . .. ............... 31
Hong Wang* Joshua Zahl 1 Contents 4.4 The Frostman Slab Wolff Axioms and Covers . . . . ............
. 7 A two-scale grains decomposition for tubes in R? 60
February 26. 2025 1 Introduction 5 Factoring tubes into flat prisms 71 Broadness 63
y X . 1 Broadness . ... ...
L1 Theorem 1.2 and multi-scale analysis . . .. ....... 5.1 A few frequently used Cordoba-type L? arguments . . . . . ........ 7.9 Broadness and the Frostman Slab Wolff axioms 66
1.2 Unions of convex sets, and non-clustering . . . . ... . . oo e e e A
1.3 From Asserti D and £ to the Kak " ect 5.1 A volume estimate forslabs . . .. .................. 7.3 The iteration base case: Guth’s grains decomposition . . . . . ... ... ... .... 69
- om Assertions L7 an © the €ya set conjecture . 5.1.2 Tangential vs transverse prism intersection . . ... ... ... .. 7.4 Moves #1, #2, #3: Parallel structure 70
1.4 Proof philosophy, and previous work on the Kakeya set d . & ; : T T T
Abstract 15 A vignette of the proof 5.2 Assertions F, £, and £ are equivalent . . . ... ... ... L 7.5 Using Moves #1, #2, #3 to prove Proposition 7.5 « +  « v v oo oo v e oo, 7
. vignette ol the prool . . . . . . . . . .« v v 0 s .
We study sets of § tubes in R3, with the property that not too many ) o i ) 5.3 Proof of Proposition 5.1: Tubes that factor through flat boxes . . . . . . |
inside a common convex set V. We show that the union of tubes fro 1.6 Tube doubling and Keletis line segment extension conje 5.4 Proof of Proposition 5.2: Factoring at two scales . . . .. ........| 8 Moves #1, #2, and #3 74
almost maximal 'volun%e. As a consequence, we prove that every Kakeya L7 Thanks . ..o 5.5 Tubes organized into toslabs . . . . .. ... .. ... 8.1 Move #1: Replacing grains with longer grains to ensure ¢ > 5C§(#TP) J#T) .... 74
and Hausdorff dimension 3. 2 A sketch of th ¢ 8.2 Move #2: Replacing square grains with longer grains . . . . . . ... ... ...... 74
) 1S ;tc o ; elp;oz vions D and & valont 6 Assertions D and £ are equivalent 8.3 Move #3: Replacing grains with wider grains with small C1%¢ .., . . ... ... ... 85
. roposition 1.0: Assertions £ and ¢ are equivalent . . . 6.1 Proof of Proposition 6.3: A factoring trichotomy . . . ...........
2.2 A two-scale grains decomposition . . . . . ... ... .. 9 A refined induction-on-scales argument 100
2.3 Refined induction onscales . . . ... ...... ... ... 21
2.4 Multi-scale structure, Nikishin-Stein-Pisier factorization, and Sticky Kakeya . . . . . 22 10 :ti:lky Kakeya for tubes satisfying the Katz-Tao Convex Wolff Axioms at every
cale 103
3 Notation 23 10.1 Nikishin-Stein-Pisier Factorization and the Convex Wolff Axioms . . . . . ... ... 105
3.1 Convexsetsand shadings . . .. .... ... . ... . ........ ... .. ..., 23
32 Table of notati 2 11 Multi-scale analysis and the proof of Proposition 1.7 110
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*Courant Institute of ical Sciences, New York Uni: ity. New York, NY, USA. 12 Tube Doubling 114
TDepartment of Mathematics, The University of British Columbia. Vancouver, BC, Canada.




Hence if W C Wy, to compare #(Uw-ew uo[wi]) and Yy, e #U Wi,
A proof fragment of

Competition v.s. Research ORI ETE
Ko Crrow(th Z Wil < N #U Wi = ( || ui—l[Wi]) the 3D Kakeya Set

Tsinghua University
d Key 2: Procedural Rigor &
Ul Wiew! Wiew! Conjecture

|
|
Zero tolerance for errors. Verification is | <#( U wiv)< Y saiw) < Cmorte) s oy
|
|
|

I w;ew’ wWienw’ |U| W;e
mandatory yet exceptionally costly w w W

(4.12)

The equality in (4.12) uses the critical fact that if ¢ # 4/, then U;_1 [W;] and Uy _1[W;/] are disjoint.

___Case Validating Process _Duration_

The initial proof was presented in 1993, and then a
Fermat’s Last flaw was identified after scrutinized by top
Theorem mathematicians. The revised proof was finally
published in 1995.

~2 years

The proof was released in three preprints, and was
finally validated by the collaborative effort by ~4-5 years
geometers and topologists.

Poincaré
Conjecture



Competition v.s. Research NI ERE
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Kurt Godel

Competition problems have known and
determined answers

The answers of research problems are
unknown and undetermined

(o }— G

Halting Problem

U U — |

Godel’s First Incompleteness Theorem:

In any consistent formal system that is strong enough to express basic
arithmetic, there will always be true statements that the system cannot
prove. The system is inherently incomplete.

Godel’s Second Incompleteness Theorem:

Such a system cannot prove its own consistency from within. To
establish its consistency, we must rely on methods outside the system.



Al4Math: Formal Proving

Tsinghua University

® Formal proof systems have evolved through decades of research, with

Pros

Provides certain symbolic
automation

Guarantees absolute rigor
via machine verification

Cons

Current formal tools faces
severe performance
bottlenecks

They can not be applied to

research level problems

Show that for any integer n > 4, we have n? < nl.

theorem induction_ineq_nsqglefactn (n: N) (ho:4<n):nA2<n!:=sorry

Understanding the Problem
We need to show that for any integer n > 4, the inequality n? < n! holds. Here,

n! denotes the factorial of n, which is the product of all positive integers up to n.

Proof Sketch

To prove this formally, we can use mathematical induction. Here's how the
induction would work:

1. Base Case: Verify the inequality for n = 4.

2. Inductive Step: Assume the inequality holds for some k = 4, i.e., k? < k!.
Then show that it holds for k + 1, i.e., (k + 1)? < (k + 1)!.

-:. chain-of-thought by DeepSeek-V3

Lean 4 Proof Structure

theorem induction_ineg_nsqlefactn (n : N) (ho:4<n):nA2<n!:=hy

have base_case : 422 <4 | :=hy

sorry
Bl have inductive_step: V k24, kA2<k! > (k+1)A2<(k+1)!:=by

sorry

have final_proof : ¥ n24,nA2<n!:=hy
sorry

sorry

institutions worldwide - including DeepSeek and ByteDance - actively
advancing this field.

El Recursively Solve Subgoals by DeepSeek-Prover-V2-7B

lemma inductive_step (n :N) (ho: 4 <n) (base_case: 472 2<41)
:Vk24,kA2<k! > (k+1)A2<(k+1)!:=by
sorry

Synthesize into Complete Formal Proofs

theorem induction_ineq_nsglefactn (n : N) (ho:4<n):nA2<n!:=bhy
have base_case : 42 2<4 | :=hy
simp [Nat.factorial]
I have inductive_step: V k24, kA 2<k! > (k+1)22<(k+1)!:=by
intro k h1 hz
simp_all [Nat.factorial]
nlinarith

have final_proof: ¥ n24,nA2<n!:=by
intro n hn
induction' hn with k hk
case refl => exact base_case
case step =>
apply inductive_step k hk
exact by assumption

apply final_proof
exact ho

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/



Al4Math: Coding Agent TONEES

Tsinghua University

Recent studies have begun exploring the potential of using large
models to perform mathematical research tasks.

@ Scientist / Engineer

Initial program
Evaluation code with components
to evolve

1

1

! Prompt template Choice of existing
! and configuration or custom LLMs
|

1

1

- Origin: Launched by Google l L | l
DeepMind on May 14,2025 & —* -t vt

- Nature: An agent system
specialized in algorithmic
optimization

« Achievement: Demonstrated
capacity for independent novel
discoveries

« Limitation: Limited to
problems amenable to code

Program database| Best program

|
i
|
|

Distributed Controller Loop

|
|
parent_program, inspirations = database.sample() i
prompt = prompt_sampler.build(parent_program, inspirations) |
diff = 1lm.generate(prompt)

child program = apply diff(parent _program, diff) |
results = .execute(child _program) !
database.add(child_program, results)

____________________________________________________________

QS AlphaEvolve

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/



AIM: Al Mathematician

Tsinghua University

® AIM represents an important step towards automated math research

Short reasoning
Rigor requirement
is easily satisfied

the answer
« Deterministic

Research

Long reasoning
Rigor requirement
is hardly satisfied

1
1

of the answer
e Indeterministic

| Competition |

« Known existance of

« Unknown existance

Quantum Algorithm
Problem

(Settled Problem)

Absorbing
Boundary Condition

(Settled Problem)

High Contrast Limit
(Settled Problem)

Homogenization
Problem

(Open Problem)

Research Problem Results of AIM Selected Proof Steps

AIM effectively
completes the problem
with a detailed solution
process

AIM provides a
substantially complete
proof for this problem

AIM completes main
proof of the conclusion
and produces other
correct results

AIM provides partially
correct conclusions and
reasoning, offering
instructive guidance




Overview of AIM N EZS

Tsinghua University

® An LLM-powered agent system specially designed for math research,
consisting of three agents (Explorer, Verifier, Refiner) and a Memory.

Saves Validate the
L J [ ] /
verified — === ——---- _ proofs
lemmas 7 e
- o
L =
Q 5 oc ©
a Verifier —
> TT— :P,_
()
S N o
= 3
S, Explorer o
(@)
(D L ]
Proposes =" ©  Revise wrong
° ° - . Yy f*+htAr HH=-=-=-_----""=""_"="=="=m®=-m
the direction - proofs
and proofs

Background and Contextual Information



Long Reasoning: Explore & Memory

Tsinghua University

® The agents within AIM are tasked with exploring the original problem
and documenting their discoveries as lemmas during the process. By

iterating this procedure, the exploration progresses further, ultimately
achieving problem resolution.

Explore

,,/f”’/’/’/’/’* \\\\\\\\\\“‘\\*

Problem Proof

review

AL refine

Findings



Validation: Pessimistic Verification NEZE

Tsinghua University

® Each new discovery during exploration is repeatedly verified multiple
times; if any single verification detects an error, the discovery is
deemed incorrect. S REViEW: -~

Findings “SREV] j—\
& Pr'om%s e > Review: W‘j

O Conducting multiple
rounds Of Self-checking ......................................................................... o

can effectively identify
Issues

.......................................... @ A Review & Refine

d Erroneous proofs can be Refiner Loop

analyzed and corrected

y,
-

O Correct proof conclusions
are eventually stored in =

memory :
Worst
\_ )
Memory < kResultj




Agent Design in AIM CONERSE

Tsinghua University

® All three agents are guided by meticulously desighed prompts,
supported by logical processing methods to facilitate collaboration.
Prompt Example

(Pmmpt Structure

##% Instruct Define
’ — <«=-= behavior of
an agent

Including task goal, reasoning direction,
output format, etc.

o
°

You are an expert that is knowledgeable across all domains in math. This time you are as
ked to help with our frontier math research. Its statement is as follows:

This problem could be difficult and not able to be directly solved, but you can make you
r contribution with the following instructions:

W N =
o
v
o

o o

#HH: Problem Description

S 9 s
= °<yﬁ> 1. You are required to explore different approaches or directions that might help with o
ur final goal, and write down one interesting finding in your explorations as a new conjectu
< re in your response. DO NOT claim that you can not do this jod.

2. Your conjecture must contain the complete definitions required within it, such that i

I |
| I
| I
| I
| |
| I
I I
| I
| |
| I
I I
| I
| |
| I
I I
I I
I is able to stand alone as an independent lemma, unless it is declared in memory. Do not prij
<> | :
| I
I I
| |
| I
| I
I I
I |
| I
| I
I I
| |
| I
I I
| I
| 1

opose any existing lemmas as your new conjectures. You can directly use them in your explora
ions.

3. You should wrap your finding inside a latex environment: \begin{conjecturel}\end{conje
ture}. This conjecture should be equiped with a detailed, complete and rigorous proof. You

#HH: Memories

hould explicitly write down every intermediate derivation step in the proof. The correspond
ing proof should be wrapped in \begin{proof}\end{proof} directly followed by the conjecture.
4. After these components you should also provide the dependency of this conjecture. You
need to write down the memory IDs of lemmas used in this conjecture in a JSON array format,
and warp them inside \begin{dependency}\end{dependency}. For example, a dependency of a new|
conjecture could be \begin{dependency}[@, 3, 4]\end{dependency}. You can use an empty array
"[]" when this conjecture does not depend on other lemmas.

e Mem ID: ©

#HHE Mem ID: 1

More accurately, your response should obey the following format:

\begin{conjecture}Your new findings here\end{conjecture}

\begin{proof}Your proof of the conjecture above\end{proof}

\begin{dependency}An json array of related memory IDs of this conjecture\end{dependency}
Moreover, when you think the time is right that you are able to prove the original probl

000000




Agent Design in AIM

A%+ %

Tsinghua University

® All three agents are guided by meticulously designed prompts,
supported by logical processing methods to facilitate collaboration.

(Pmmpt Structure

~

# Instruct

S

W N =
o o

o

#HH: Problem Description

L=
L4

#HH: Memories

e Mem ID: ©

#HHE Mem ID: 1

oooooo

Define
<«=-=- behavior of
an agent

Description
- of the
problem

--------- Prompt Example -

Information directly related to the task, for

each agent it could be:

« Explorer: the statement of the final goal

 Verifier: a conjecture and its proof

« Refiner: a flawed conjecture, proof, and
the feedback from the verifier

\begin{problem}Question:

Can we prove: for any $\delta>@$,

\[

\mathbb{P}[n~{-\delta} \mathbb{E}[Y_n]\leqg Y_n\leq n~{\delta}\mathbb{E}[Y_n]]\geq 1-0(d~*

{-n})
\]

If the second claim is not true, can we prove: for any $\delta>0$,

\[

\mathbb{P}[Y_n\leq n~{2+\delta}]\geq 1-0(d~{-n})

\]

\end{problem}

This problem could be difficult and not able to be directly solved, but you can make you
r contribution with the following instructions:




Agent Design in AIM ON(EET
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® All three agents are guided by meticulously designed prompts,
supported by logical processing methods to facilitate collaboration.

(Prompt Structure I Prompt Example “““

##% Instruct Define
’ — <«=-= behavior of
an agent

Formatted exploration history in memory

S #H Context and History Explorations

#HH: Problem Description

o : : Description
o : it == of the

I
|
1
I
I
|
1
I
I
|
1
I
I
|
1
o I I
ow prOb em : There exists a constant \(A>@\) and a nonnegative random variable \(Y\) such that
1
I
I
|
1
I
I
|
1
I
I
|
1
I
I

W N =
o o

Here is a list of context that we have collected for this problem or our history finding
s during exploration. They serve as the background of the conjecture and proof and can be ac
epted without controversy as correct.

#HHEE Memory xxID: 1k

\begin{lemma}

igorall k\gel:\quad \EE[Y~k]\le k!\,A%k,

>2t for some \(t>@\),

EEP(Y\ge £)\5>\;\exp\!\Bigl(-\frac{t}{2A}\Bigr).

}2 other words, the bound

iEP(Y\ge t)\le\exp\!\Bigl(-\frac{t}{2A}\Bigr)

égnnot hold for all \(t>@\) under only the moment hypothesis.

#HH: Memories

e Mem ID: ©

o Infomation
#4448 Mem ID: 1 in memory

*xDEPENDENCY*x*: []
\end{lemma}

oooooo

#HHHE Memory **xID: 2x%x




Memory Design in AIM
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AIM parses and logs four categories of data from the model's outputs,

with a portion of it being structured and fed into later agents’

inputs.

Memory type, e.g.,
context, lemma,
conjecture, etc

Textual description
of the memory
content

A complete proof
to this lemma

( struct MemoryBlock {
"""""""" (Memory Type )

[Content @escriptionj

.
.
.
““
.
.
.

Visible to all these

agents

Saved and discarded

{Proof:

S

o
o
o
o

[Meta@atajxm

3

in explorations

A1l components in the
memory blocks will be
visible in the output

Other metadata of this memory,
e.g., solved tag, num reviews, etc
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® By arranging the lemmas according to their mutual dependencies, the
exploration process can be structured into a lemma graph—essentially
a directed graph that starts from the initial assumptions.

This brings two critical porTmmnee e Example of Lemma Graph  EESSSSESE

Improvements: : ,
: Assumption
! secondary lemma

0 Easy identification of
actural proof path. | ;
: Q significant lemma .

O Quantitative assessment

of each lemmas. (By Q primary lemma
calculating the |

derivations of each |
node in the graph.) | O desired theorem




Dynamic Verification in Lemma Graph NLEESE

Tsinghua University

By dynamically allocating verification resources by the importance of
each lemmas, we can further guarantee the reliability while increasing
its efficiency.

Assumptlon Assumptlon
Assumptlon W
Initial Trace back and verify Accumulative

proof graph on new conjecture num verifs
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® AIM is applied to address four mathematical theory problems,
including three settled problems and one open problem.

Research Problem Results of AIM Selected Proof Steps

«
V4
V4
V4
Y 4
Settled ’

Problem (-\:"’
\
\
\
\

Y

Open
Problem

---->

Quantum Algorithm
Problem

(Settled Problem)

Absorbing
Boundary Condition

(Settled Problem)

High Contrast Limit
(Settled Problem)

Homogenization
Problem

(Open Problem)

AIM effectively
completes the problem
with a detailed solution
process

AIM provides a
substantially complete
proof for this problem

AIM completes main
proof of the conclusion
and produces other
correct results

AIM provides partially
correct conclusions and
reasoning, offering
instructive guidance

<--- DeepSeek-R1

 <=—- DeepSeek-R1

DeepSeek-R1

—— and o4-mini,
each conducted

one experiment

" <«=== 04-mini
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Quantum Algorithm Problem CNLEZS

The Linear Combination of Hamiltonian .
Simulation (LCHS) method is an efficient The Black-Scholes-Merton (BSM) model is the

approach in scientific computing. Its main idea fundamental mathematical framework used
is L tol transform noncunitaryl | dynamical for pricing European options in finance.

problems into linear combinations of
Hamiltonian simulation.

o~ Jo A(s)ds _ I o= Jy (H(s)+kL(s)) ds oV 1 9 282‘/ oV B
4 /Rﬂ(1+]g2)7- dk E—l‘iUS’w—l—Ts%—TV—O

Objective: To simulate the BSM model using the LCHS

method, design corresponding quantum algorithmes,
and analyze the complexity of the algorithms.

AIM correctly applies this method, providing a detailed proof and basically solving this problem



Quantum Algorithm Problem CONEES
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' Lemma (Linear combination of Hamiltonian simulation, LCHS): For ¢t ¢ [0,7],
' A(t) € CN*N be decomposed into Hermitian and anti-Hermitian parts such that A(I)

L(t) + iH(t), where L(t) = L[A(t) + AT(t)] and H(t) = L[A(t) — A1) Ae-'

. sume that L({) is positive semi-definite for all ¢ € [0,7]. Denoting the time order- : Explanation
Emg operator by 7, we have Toxp{ f() A(s)ds} = [en(k)u(t, k)dk, where u(t,k) is | of Ithe LCHS
' the propagator for a time-dependent Hamiltonian simulation problem such that u(t, k) = emma
T exp { i fo [H(s) kL(s)]de} and 7(k) m is the kernel function with respect to k
Sy SteT_ ?_ié_s_i{&}_{l&iéi§_ﬁ{é_iiiié_iﬁ_{rié_ié_s}i{/i_;{{{)}iéi_i;gi_v"c}}_i{; ________________________________________________________ |
Inpu 5 . Explanation
| WY | L2V gV Ly, | ofEche BSM
ot 2 052 S i
model

Boundary conditions are characterized by: V' (0,) = Oforall 0 < ¢t < T V(S,t) —» S
i Ke "T=Y for § — oo; V(S,T) = max{S — K,0}.

Your tasks are to: Use the idea of LCHS to deal with the BSM model. Design a quantum |
algorlthm to solve the equation. And compute the complexity (query complexity to state | objective
prcparation oraclc and opcrator oraclce gate complcxity, ancilla qubits, (parameters: norm of !

_________________________________________________________________________________________________________________________________
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® AIM solves the problem by transforming the BSM equation into a heat
equation, applying the LCHS lemma to reformulate the problem, and
proposing a quantum algorithm. The core steps are as follows:

PDE transformation
and spatial
discretization

 Transform the BSM equation into the standard heat equation
- using variable substitution, and discretize the spatial variables. 5

Apply the LCHS lemma to decompose the solution operator of
the heat equation into a continuous linear combination of

unitary operators. Then, truncate and approximate the
continuous integral and discretize it.

Operator
decomposition and
integral discretization

OITENGIEITI5i 4,1 Design quantum algorithms using the linear combination of
Tyl ERENEHCLHER B unitaries (LCU) and Hamiltonian simulation techniques, and
Lol [ GVAELEWS R calculate the complexity.




Quantum Algorithm Problem
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AIM explores step by step through a seq. of progressively built lemmas.

Lemma 1: First, AIM transforms the BSM equation into a heat equation, then discretizes the spatial

variables, and verifies semi-definiteness. Further, AIM converts it into a form that can utilize the
LCHS lemma, with a detailed proof.

1.The Black-Scholes-Merton (BSM) partial differential equation (PDE) can be transformed into the standard Multiply through by e"(T—%) cancel terms, and simplify:

heat equation via a logarithmic substitution. Specifically, under the transformation 2 = In(S/K) + (r — ) 5

o2 )2)(T —t), 7 = (T — t)/2,and V (S, t) = e "T=YU(x, ), the BSM PDE reduces to: —%(‘)TU + %Hf.U =0 = 0:.U =092U.
ou o*U **Step 2: Spatial Discretization™*

or ~ oar T T e T Kt U T i diermnes

Discretize z on a grid with spacing Ax. Approximate 92U via finite differences: |

Discretizing this PDE spatially yields a matrix equation 8, |U) = —B|U), where B = —d2. The operator 2rr - Uirr — 2U; + Ui I Discretize
B is positive semi-definite and can be directly interpreted as B = L, where L = —d2. While the original I LU~ Ax2 : | t. I
Hermitian decomposition B = L + ¢ H (with /7 . . - . Spa Ia
. . . . . Let D, be the discretized second derivative matrix. The operator becomes: |
of B permits alternative quantum simulatior .
p q Tran.sform the-BSM eguatlon I 5 D, | variables
- o o o o o o EE O EE O EE o O EE e o e o e o= owd
Proof. **Step 1: Transform BSM to the He into a heat equatlon
I-St_ — h_h_BS_M?DE — e e e **Step 3: Positive Semi-Definite Operator**
art with the :
1 aV 1 5 5 Vv i LoV i 1 The matrix B = — D is positive semi-definite because D, (a centered second derivative discretization) is
| ot 7277 352 +7S as " V=0 | negative semi-definite. This aligns with the dissipative nature of the heat equation.

| Apply the substitution V(S,t) = e "T=YU(z,7), 2 = In(S/K) + (r — 02/2)(T — t), and 7 = | **Step 4: Implications for Quantum Simulation**

. . . ‘ — —_ 0-2 i 2 /o) £ . . . ., . . . & PO .
| 02(T — t)/2. Compute derivatives rigorously: - 9,V = e~"(T~" (T‘U - % 0-U—(r— UZ/Z)OEU) - I While the original decomposition B = L + iH (with H = —icd.) is invalid due to the absence of a
lg.v_ —r(T-1): 1 921 _ —r(T—t) (9277 _ 1 first-order term, the operator B itself is suitable for quantum simulation methods designed for parabolic
I OsV =e 0uU - 5,-0sV =e (d“'U Oz U) 52 equations. Specifically, the time evolution 9, |U) = —B|U) can be simulated using Trotterization or other
I Substitute into the BSM PDE: dissipative quantum algorithms, bypassing the need for the LCHS lemma. O

2
I e TY |y — %HTU —(r—0?/2)0.U + %(72((‘93.(] —0,U) + rd.U — TU] =0.
|

—— e - - o - - e e e o e e e e e e e e e e e e mw e we o]

[Correct] Variable substitution and equation transformation are correct. Discretization of the spatial
variable is correct. And AIM finds the reduced PDE trivializes the LCHS lemma. It’s right!
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. 2.The integral representation in the LCHS lemma for the BSM model can be approximated with precision e
Lem ma 2 ) AI M alte Iyzes using O(1/¢?) terms through an adaptive discretization of the k-integral, leveraging the rapid decay of the
truncation errors and Cauchy kernel 7(k) = —yp;.
rmin iscr e e —— =
,dete €S d screte I Proof. **Truncation Error Analysis**: The integral I = [ n(k)u(t, k)dk is truncated to [—K, K].:
Intel‘va|S, Iay|ng the I The tail error is bounded by: I Analyze
1 I € oo € °
foundation for / . ._2/ L e 2(7_ ~ L I| truncation
: |k|>K7}(k)dk == et (2 arctan(K)) N forK > 1. ;

error

constructing quantum
algorithms. oo ks e e e O ez ===== ;

I Setting - < ¢/2 gives K > 2. Thus, K = O(1/e).

** Adaptive Discretization®**: 1. **Central Interval [— K, K|**: The entire truncated domain [— K, K| i| Determine
must be discretized. To bound the discretization error, use a uniform grid with spacing Ak = ©O(e). The

number of points 219 N = (g(K/Ak) = ()(1/62). The discretization error using the tgapezoidal rule ! discrete
scales as O(K Ak? - max |97 (n(k)u(L, k))|). Since 5(k) and u(t, k) are smooth, max |97 (n(k)u(t,k))| 1| « I

is bounded over [— K, K|. The total error becomes O(KAk?*) = O (2 - €?) = O(e). 1| Intervals

r

the tail beyond K = O(1/e) contributes at most €¢/2. The central interval [— K, K] is approximated
with O(1/¢2) points, ensuring the total discretization error is O(e). Additional adaptive methods in outer |

intervals (e.g., geometrically spaced grids) would only reduce logarithmic factors, which are asymptotically |
dominated by O(1/¢€?).

I

[

[

| Overall error
I **Total Terms**: The uniform grid over [— K, K] requires O(1/¢?) terms. While adaptive grids in outer

[

I

[

analysis

regions could marginally reduce constants, the dominant term remains O(1/¢?).

*#*Final Error**: Truncation error O(e/2) + discretization error O(e/2) = O(e). Thus, O(1/€%) terms
suffice for e-precision approximation. O

[Correct] Truncate and discretize the integral correctly.
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AIM combines previous lemmas to construct a quantum algorithm using Hamiltonian simulation
and the linear combination of unitary operators (LCU), then calculates its complexity. There are
some errors in the complexity calculation, but the core methods are correct.

[C

3.The solution operator for the heat equation derived from the BSM model, U(7) = €™
mated via the LCHS lemma as a linear combmauon of Hamiltonian 91mulat10m Spemﬁcal
representation [, 7
quadrature weigl
total query comp
polynomially wit

SN —ikLT 31, et T s lan A et tee AL VaYa i

Proof: integral of unitary operators
I-"‘Sz:p_l l_nte%ral_l{egreﬁlcg v; IEH_S*;Fr;mIcr;m;OThe:ol:tl(; ogerzor_for_th;wat equation
lis 7 (1) =c¢€ Let L B, a positive semi-definite operator. By the LCHS lemma with H = 0, we
lexpress:
1
I B _ k —sz‘rdk k) —
e = [ o) ") =

e~ Z"(kj)Ak N

=1

Transform the solutlon of the equatlon into a)

linear combination of unitary operators

, can be approxi-
lzy the mtegral

erms with

Based on the flrst lemma; use the.LCHS e
lemma to transforminto a continuous

les

|**Step 2: Quadrature Discretization** Lemma-1 guarantees the integral can be discretized into M = |
I()(1/e ) terms with weights 7(k;) Ak, yielding:

1**Step 3f Hamiltonian Simulation Costs** Each term e~ **i*™ requires 91mu]atmg L for time t; = k;7l
| Using optimal Hamiltonian simulation algorithms (e.g., quantum signal processing or Taylor series) w1th|
Iquery complexity O (|| L||£; + log(1/esim)), set &sim = €/M to bound the total simulation error by e. Sincej
Ik = O(1/€) dominates the quadrature, £; = O(7/¢). The per-term complexity becomes: I

| O (|| Ll|7/e +log(M]/e)) = O (|| L||r/e) - I

|**Step 4: Total Query Complexity** Summing over M = O(1/€?) terms, the total queries to the L-oracle I

jare:
€ €
:Expressing interms of 7" = % and absorbing constants: Com plexity

: o ( |L||T) _ analysis
€

7"({ Utilize Hamiltonian simulation algorithms

|
|*Step 5: Ancilla and Gate Complexity** The LCU framework requires log M = O(log(1/¢)) an-1

cilla qubits. Gate complexity inherits O(M)-scaling from the superposition state, augmented by |
()(poly(log( ||L||T/ e))) factors from simulation subroutines. The dominant terms remain polynomial |

[Ermr] There are some mlsmkes about complexity computmo And the calculation process lacks detail.
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Homogenization Problem CONEZE

® Problem Description: The homogenization problem for transmission systems
requires analyzing the properties of equations and their corresponding solutions
under specific physical scale limits. The goal is to ultimately prove the error
estimation of solutions, which remains an open problem.

(L A ple = 0 in € \ E, where Lj;(u,,p.) = fiAu, + Vp, denotes the Stokes operator with viscosity constant /i and p, is
Lﬁ(uc-, pe) = 0anddiv ue =0 in D, the pressure field. Its exterior derivative is defined as % :=pN + 2uD(u)N.
< u(|—:u(|+ and ())(Uf_,pt)‘ — )(_)u,__' ()naD(a o . ) —
: ' OV(o0,i) | - Vxm | 4 ~ Now we let ¢ — 0, so that the scale of the cell is tend to be zero. We wonder what homogenization
1 1 . A . o fn . .
du, s = d ‘ 3 (¢ equation does the limited solution uy;,, satisfies. At the same time, whether the estimate between the
) |90 g € Hy (0%) and llc|()52 € Hg (092), original solution and the limited solution has the form C("||g||" }on) for some a € (0,1) .
- . 6. Error estimate and strong convergence Define the two-scale corrector
« AIM correctly applied mathematical theorems PETENTIN e
1 1 1 Te H tended in each D, by Ey+xZ(y). A Céa-lemma-type s tin the perforated domain (again relyi
and analytical derivations, providing some e e
accurate conclusions and approaches. e — 0%l < O Nl 175y

From this one deduces u, — wug strongly in /,2(52) (and even in H '(sz,,) up to the corrector).

This completes a fully rigorous derivation of the homogenized elastic limit and the explicit formula for
~vhom

« The results are of guiding significance for g
human mathematicians conducting this
research.

Correct asymptotic expansion approaches
and exploration of conclusions.



Human-Al Collaboration CONEEE
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® Objective: Solve the Homogenization Problem with minimal human
input through human-Al collaboration.

Math ) )
Math a )
“




Human-Al Collaboration CONEES
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® Subproblem decomposition of the homogenization problem:

Two-Scale Expansion Easy Humans handle the task
Cell Problem and Medium A suitable cell problem is manually constructed, and
Homogenization Equation the homogenized equation is derived by hand
Existence and Uniqueness Hard With minimal h|nt§, AIM dlscc_)v_ers the correc_t
theorem and proof; humans fill in some details
Ellipticity of Operator Medium With mlanaI r.nnts, AIM prc_)wdes a Iargel_y complete
I-’Ieell IIHlllalls Ie““e Seme deEaIIs
L With minimal hints, AIM presents the correct proof
Error Estimation and :
Hard approach and some steps, which, after human
Control :
adjustments, led to a complete proof process
Reqgularity of Cell Problem Hard With minimal hints, AIM provides the complete proof
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Background: Cell Problem NEZS

In the derivation process of the homogenization equation, the
construction of the Cell Problem is a necessary technical step.
Specifically, we manually constructed such a Cell Problem as
described in the following equation.

V- [AV, - X“I +2uD,u] =0 in Y \w
V- [r7T+2aD,x"] =0 in w

V, X7 =0 in w
Yl = Y| in Ow
7T+ 20DYYIN|- — AV, - XYT +2uDY”|N|; =0 in Ow




Subproblem: Regularity of Cell Problem
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AIM attempted to derive

r o N
the error estimation lue = w0 = ex(—) Vol o) < C, 2 [[x[lo)e? [[uolwa)

Manual review of the . 4. Lot C R be as above, x{y) ¥-periodic with x € L=(Y), Vo € LAY)
. . emma 4. Let Q) C he as above, x(y) Y -periodic with x € L>*(Y). V,x € .
eStlmatlon reveaIEd that the cut-off of Lemma 8, and S. the mollifier of Lemma 7. Then for every uy € H?(Q

AIM re.lled on the . llex(x/e)n-(Vug — SE(V7L[)))||H1(52) < Celluo | r20)-
following properties

. e where C' depends only on Q. || x||zex). IVX|L2v). and the mollifier.
without providing proofs

We analyzed that this property
is likely correct and applied AIM X € {-I-v’l’oo()/’ \ w) U Hf”"l*o"(w)
to prove the regularity

Difference Schauder Galerkin
Quotient Theory Method
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Schauder
Theory

=

I?emma 1 S?I])[)()s{? Q= R(’. S= {41‘,,1 = ()}.B+ = {J‘ € B(l) t g > ()} and Lemma 4. Ay, Ay are the tensor constant, a is the matriz constant.
B_={zxe B(1): x4 < 0}.Here B(1) = {||z|| < 1}. Consider this equation: for

V € HH(B(1); RY)

(VV A VX)B, +(VV : AVYX)p_ 4+ (7, V- (aV))p_ =0 (1)
| V- (ay) =0 (2)

IIIm'(? X = Dx.7 = D%, |a| > 1 and Ay, Ay are constant tensors, a is a constant
Imalri.r. Then we have for Vk > 1

3 Xz (B34 < CliXlzzsa))
+
Irllaesea)-) < Clirllzsay-)

Lemma 2. Suppose that M is the constant matriz in R™?, the following are

equivalent :
Vy€e{ya=0} Mizx=M_-x (3)
Jee R st. MyM_=Cel (4)
(I—eXeq)My = (I —eFeq)M_ (5)

Definition 1. Ay, Ay are the tensor constant, a is the matriz constant. If

M satisfies the above Lemma 2 and V - (aM_y) = 0 in B(t)_
Miyly>o + M_yly<o + C.q(y) = r(0).
We call 1, q the piecewise linear solution of the following equation:

. Letl(y) =

V- (AVI1) +aTVq =0,V - (al) = 0, in R (7)

ol ol
L= 7'E‘+7E|7 {ra =0} )
(8

Suppose that L is the space of all the piecewise-linear solutions of the above
equation. And N(l,q) € L, we define ((l,q) = (‘)—’) - (’)—’),

v v

= (A1My)eq — (AsM_ +1(0))eq, on

Lemma 3. Ay, Ay are the tensor constant, a is the matriz constant.

V.- (A4,Vy)=0 in
V- (AyVY) +af'Vr =0; V- (ax) =0 in
COx 19

— |+ — === = g0. on

T ov v

B(1)4 (9)
B(1)_ (10)

X+ =X B(1)n{zg=0} (1)
xand r are the weak solutions of the above equations. Then for Vk > 0.« €
0.1] Lwe have 32, [IXIl g3,y < CUNXNL2(BOY) + 190]) -

|
|
I
|
|
|
|
|
|
| V- (AV)=0 in RY (6)
I
|
|
|
|
|
|
|
I
|

V- (A VyY) =0 in B(l); (12)

V- (A2Vy) +aTVr =0,V - (ay) =0, in B(1) (13)
X ax, o

X+ = \—«%H*m\— = 9o, on B(l)N{zq=0}  (14)

x and r are the weak solutions of the above equations. Let1(y) = (V)4 (0)yly>o+
(VX)-(0)yly<o + x(0).q(y) = r(0).

By Lemma 1 we know thatly, =1 and (I—e¥eq) (V) = (I—eTeq) (VD) on  B(t)N
{ya = 0}. So by Lemma 2, we know (l,q) € L

Moreover, Vy € B(%) Jor some 3 € (0,1)

X)) < [X()=x(0)=(VX) (0)y] < Clyl™ (N ers s ) < C|y|“’“<(/3( )|\|‘2>%+lyn|>
1
and Yy € B(%),

r—q| < ClylP([Flcosmee <Cly "’/ r[2)2
| | [yl ([rlco.s sy ) [y1”( ) [r*)

Therefore Ny € B(%) for some 3 € (0,1)
STEAT: LA 2,1
()=l < X)X O) (V) )y < CIIPH (I eraes ) < (Iﬂ’“((ﬂ( ) [XI*)%+t]g0])
JB@
and Yy € B(é)

Y Y4 201
Ir=al < P rleoasy ) < CILPHL, 1)
t 2 t I

Lemma 5. Ay, Ay are the tensor constant, a is the matriz constant.

V- (AiVx)=0 in B(1l)4 (15)

V- (AyVX) +aTVr = 0;V - (ay) =0, in B(1)_ (16)
) )

Xt = X gob = oul- = g0, on B()Nn{zg=0}  (17)

x and r are the weak solulions of the above equations. Moreover, ¥p € (0,1)
integrate the above inequalities to get

(f. =1+ sl - .0 < PP P+ tan)
B(p) B(t)
SoV(I',q") € L.by the inequality above ,we have

I 1 D st i
ifraccl(f, NP olan—C0.0l) < O infrgec(f 1)+l
B(p) JB(t)
Lemma 6. Suppose ¢ : Ry — Ry is a non-decreasing non-negative function
satisfying ¢(p) < C(2)Po(r) + Br®, where > a > 0,C > 0.
Then Y0 < p <r < R,3Cy, s.t.0(p) < C1(§)*o(r) + Bp®

We adjusted the
lemmas from the
schauder theory
method into a form
suitable for the
equations of the
Cell Problem.

AIM was utilized to
complete the
schauder theory
related lemmas.
These contents are
input into the model
as the "context"
section served as a
methodological guide
for subsequent
regularity proofs.



Subproblem: Regularity of Cell Problem
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® We transform the problem into the proof of the following theorem.

Theorem 1. Suppose Ay, As,a are C*-Hélder continuous, we set Sy = B(t) N
{xqg = 0}. x,r are the weak solutions of the following equations: for V €

H}(B(1); RY)

(VV : A1VX)B, +(VV : AyVX)B_ + (1, V- (ax))B_ =0 (18)

V- (ay) =0 (19)

Please prove )4 |Xllcresi,)) < CliXllLzsay)
This is equivalent to prove Vp € (0, ﬁ), we have

. l (8%
,,,fl,(,e.cq@ eI <t S uliamapy
. P

Here, (1, q) are the piecewise linear function and B(p) is a small ball with

any given center of the ball on S's.
1

We adjusted the
lemmas from the
schauder theory
method into a form
suitable for the
equations of the
Cell Problem.

We instruct AIM to
use schauder theory
methods to prove
this theorem. Based
on feedback from
experimental
results, we
iteratively split the
problem and
ultimately complete
the proof.



Subproblem: Regularity of Cell Problem LEZS

7  Tsinghua University

® Specifically, the entire problem is divided into the following three parts. AIM
progressively completes the proof details for each part. After iterations, AIM provided
a process with a high level of completeness and ultimately completed the proof.

(VV : AlVw,)p, + (VV : ASVw)g + (51, V- (a°V))p. =0
V- (a’w;) =0 in B(t)_
wy,=x on O0B(t) and s;=r on O0B(t)_

Perturbation of
the Equation

Morrey’s Esitmate JERIGENII\PUEEN PN uE s of !
BOOtStra-p \Il(p) < C(B)d‘l’(t) + Ct2a\P(t) Vo<p<t< l : Holder continuous i
Ananlysis R’ ’ 2 N ——— ’

. =infl,qe/;{f3(,.) |X_l|2+rd+2|4(laq)|2} L T N S S S S S i
Holder L = I € CH(Bi R, VpE (0 Wi

Regularity

|‘ Beyond expectations



Final Conclusion

¢ Tsinghua University

Finally, based on the regularity obtained from the proof, we
completed the error control of the homogenization limit.

£z - 1
lue = o = ex (=) Vol (@) < Cp, 2 [Ix]lo)e® [[uo]|waoy

Here is the error control conclusion between the solution of the
original equation and the solution of the homogenized equation.

______________________________________________________________________________________________________________________________

« The proofs of the subproblems have been preliminarily verified as
correct by a mathematics professor.

« We are currently reorganizing them into a format more suitable for

submission to mathematical journals, followed by a more thorough
internal review before final submission.



AIM Online Demo

Tsinghua University

We have deployed a web frontend of AIM systems and invited some
domain experts to use it and evaluate its performance.

& Al Mathematician

IR
&Y%, Peng I -+ it

REEOBEARIE

Peng Li
s : iz ®E -]
& Al Mathematician ) () P RE B @ %

ZRRERINE (48)

BlEEE: AR

Symplectic foliation

Let M be a compact manifold of dimension 5. There is a foliation F of dimension 4 manifolds over it. Assume that there is a 2-form w over M which is non-degenerated on F, can we prove that 71 (M) is

Complex structure ...  ENDED  7/23/2025 Parabolic inductio... SO non trivial?
Prove that there exists a complex structure on Prove that $r_B”G \circ i_B"G \math Context
the six dimensional sphere S"6 [T(k)/TA0(k)]$ is locally isomorphic td o . o ) » o .
P L When any leaf of the foliation is compact, the theorem can be proved by calculating w A w as an element in H (M) When the integrability of the foliation is dropped, the theorem can be disproved by
considering contact manifolds.
5|HE: 17 39m ago g|IE: 8
@ BIZTF 7/15/2025 - H/GiERK 7/15/2025  SOLVED SELE
BIEE: PRER billES BIEE: FRECIH
5|3EF% (6) S3BiFE
BR3|HE..
lemma-1
° lemma-1 ® Bl RE: v Bl BEM: RE WERE: 3 K X
ro e C t a e Let \(M\) be a compact, connected, oriented \(5\)\,-dimensional manifold,
and let \(\mathcal{F}\) be an oriented foliation of dimension \(4\) on \(M\...
RE 7/15/2025, 3:48:09 PM 5| 3EFRIA:

Let M be a compact, connected, oriented 5\,-dimensional manifold, and let F be an oriented foliation of dimension 4
on M. Suppose there exists a smooth 2\-form w € Q%(M ) such that, for every point p € M, the restriction of w to

lemma-2 (E2 G
the tangent space of the leaf through p,

Let \(M\) be a compact, connected, oriented smooth manifold of dimension
\(2n+1\), and let \(\mathca{F}\) be an oriented foliation of dimension \(2n... W‘T F Tp]: X Tp]: — R7
»




Some User Feedbacks of AIM

Tsinghua University

: AIM successfully addressed some Classify certain finite subgroup of SO(4)

1
1
1
1
I Suppose A is a finite subgl  iEAR: (4) with
Igroup classification, and provides a ! ine bundle { on 5\ Z whi PR
X - 3 . .
: deta I I ed p roof to |t % : subgroup A isomorphic wi We sketch one explicit counter—example, coming from the binary tetrahedral group. hite subg
L o e e ! © BIET 7/17/2025 - BEEH 1.Leth53bethebinarytetrahedralsubgroupoforder24,andIet
A = T/{£1} c SO(4)
Symplectic foliation be its image under the double covering S — SO(4). Inside T there are exactly four cyclic
Let M be 9
on F.can theorem-6 ek b .

RS v BIEE EZM: XB O TERE 9 ME: 1,3

Contex

A hard problem on symplectic foliation. The
user omitted a condition in the query, and
AIM provides a valid counter example for thls
problem. -

When a
droppec gﬁgﬁi@

Let M be a compact manifold of dimension 5. There is a foliation F of dimension 4 manifolds
over it. Assume that there is a 2-form w over M which is non-degenerated on J, can we prove

== B P E IR B Z2iAT0 R B TEE 1R

Given any positive integer 7, is there a Z2 harmonic fu=~*~= # ~= (AT ) ~onbsbns L — A2 ~o 0 00

AIM failed to directly adress a research
level problem. It exceeded the
maximum complexity that can be
handled by AIM.

This is known to be true if the metric is given by the tri' |emma_1 2
functions. However, for a more general smooth metric

RS 2 B EE2M ORE O WEREC 6 &¥Bi: 2,310
Context

Let (M, g) be a 3-dimensional smooth oriented Rit
p(S?). Suppose there is a real line bundle [ over I B|IRREAR:

Let (M, g) be as in Memory ID 0, with tubular neighbourhood N 22 S} x D, 4 and real line
bundle I — N \ K of monodromy —1. Suppose moreover that in local coordinates (s, r, )



Limitation 1: Redundant Exploration N EZT

Tsinghua University

Currently, AIM often explores in the same direction, presenting a
series of similar conjectures and identical lemmas, which increases
costs, reduces efficiency, and limits the performance ceiling.

Lemma 4. The solution operator e™™8 for the heat equation derived from the BSM model
can be approrimated with error € using a quantum algorithm that implements a discretized
version of the LCHS lemma. This algorithm requires M = O (C%) terms in the quadrature

approzimation, and the total query complexity to the B-oracle (encoding the discretized
BT

), where T = 3—2 The gate complexity and ancilla qubits scale

polynomially with log(1/e), ||B||, and T

Laplacian) is O (

Lemma 6. The quantum algorithm for solving the BSM PDE using the LCHS lemma
IBIIT

: achieves a oximation errQt dUith qugnrg complexgty O to the operator oracle
P R : a encoding I;TI‘ gl MIZI/ la(’Le ma&n and e is
age the error tolerance. The ancilla qubit count is O log— , and the gate complexity scales
as poly (|| B||, T,1og ¢, ¢).

Lemma 7. The quantum algorithm for solving the BSM PDFE using the LCHS lemma
2

requires sz’mulatz’nq the discretized Laplacian operator B = —0?% for a total time T = %

The integral fR n(k)e=*B7dk is approzimated by M = O ( ) quadrature terms. Each term

involves Hamzltoman simulation of k; B, where |k;| < O ( ) The total query complexity
to the B-oracle is O ('@UT) and the gate complexity scales as poly (||BH T,log <, 1) with
ancilla qubit count O (log Z)'




Limitation 2: Insufficient Understanding of = EPL

Mathematical Settings N {. Tsinghua Uni:ersjy

® The current AIM has limited ability to understand lengthy
mathematical setups and background conditions, which can lead to
errors in the agent's analysis process.

two-scale
—

Then as € — 0 one has, up to a subsequence, u. — ugin H'(Q2), wu. — ugin L*(Q2), p.
p1(z,y) in Q x Y;, where uo € Hp(;R?) is the unique solution of the homogenized Lamé system

—div [C"™ D, (u0)] = 0in Q, C"™ D.(uo) - n = g on 94, and the effective fourth-order tensor

R glven by the following periodic cell transmission problem: for each fixed symmetric F € Rfy’ﬁ,‘f

find (xZ,xi’, ") € Hper(Ye; RY) x H o (Yi; RY) x L2, (Y:i)/R solving

(1) In the elastic cell Yo: —divy[C (E + Dy xF)] =0, divy(Ey+xZF) =0,
(2) Inthe fluid cell Yi: —p A, xF + V, 7% =0, 'dlvy(Eu +xF) = O,.

(3) On the material interface T’ = 9Y;: xZ = x 7, [(, (E+ Dy xZ)-n] = [2/1, Dyxi — == 1]-n,

The lack of understanding of the boundaries of the unit cell here has led to
conclusions that do not align with the actual situation



Limitation 3: Lack of Derivation Details 1EZE

Tsinghua University

® AIM tends to "skip steps” , which is detrimental to both manual and
automated verification of the proof and may lead to incorrect proofs.

**Step 2: Formulate the Projected Equations** For test functions v € Vi and ¥ € Wy, n, the Galerkin
approximations satisfy the projected weak form:

/BtuN'vd:r+/ VuN-Vvd:r+/pqud;1:
Q

m

+ﬁ/u vd9+Zak/((r)upk — Aspr )vds =0,
S

/Btcp}:’t/)ds—f—/Vscpf-vsz,/)ds+dk/go,?’z/)d.ez/uNt/)ds.
_______i__________________f ______ S_ __________ The specific derivation

I{**Step 3: Solve the ODE System** Substituting u”™ = ZJ La;(Hw; and o = 377 biei(t)0r,s mtol and analysis process of
the projected equations yields a linear ODE system for a; (%) and b ,i1(t). The coefficients are smooth (as .
i eigenfunctions are C'°°), ensuring continuity. By the Cauchy-Lipschitz theorem, unique solutions exist on: the ODE SyStem Is not

\[0. 7). 1| provided here, but the
[( orrect] The agent gets the ODE satisfied with the approximated solution. CQnCIUSion is correct.

[Vague] It is better to have more detailed process.




Limitation 4: Rising Demand, Limited Suppls

4" Tsinghua University

® Actual user demands exhibit considerable diversity and extend
substantially beyond the current operational scope of AIM.

User Expectations AIM Capabilities

Provide a relatively complete
problem description

Interact with minimal input

English-language input is more

Chinese-language input Ffoctive

Zero tolerance for errors Is not yet error-free

Capable of solving any problem Has its own limitations



Outlook: A Bold Bet on Natural Language N EPE

Tsinghua University

® For the first time, large language models performed on a par with
gold medallists in the International Mathematical Olympiad (IMO).

nature big paradigm shif o

But the grades this year hide a “big paradigm shift,” says
= Q) Google DeepMind Thang Luong, acomputer scientist at DeepMind in
nature > news > article Mountain View, California. The company achieved its

Explore content v About the journal v Publish with us v Subscribe

previous feats using two artificial intelligence (Al) tools

NEWS = 24 July 2025 Q @oodje DGGbW!Uﬁ . . . .
specifically designed to carry out rigorous logical steps

DeepMind and Open Al m Od eIS Solve DeepMind Alcrushestough in mathematical proofscalculations, called
mathsproblemsonparwith  A|phaGeometry and AlphaProof. The process required

maths prOblems at level Oftop tophumansolvers human experts to first translate the problems’

St“dents statements into something similar to a programming

€ = e e

lanonaoce and then tn tranclate the Al'c cnliitinnc hack intn Fnolich

This year, everything is natural language, end to end

“This year, everything is natural language, end to end,” says Luong. The team

employed a large language model (LLM) called DeepThink, which is based on its
Gemini system but with some additional developments that made it better and faster
at producing mathematical arguments, such as handling multiple chains of thought
in parallel. “For along time, I didn’t think we could go that far with LLMs,” Luong adds.

https://www.nature.com/articles/d41586-025-02343-x



Outlook: Assistive to Proactive

Tsinghua University

E Ultimate Goal L(Theoretical] [[ AlM ] ﬁ Theoretical ]

Problem Proof




Outlook: Pose New Mathematical Problems(&:) it % £ %

g Tsinghua University

® Good problems drive mathematics; we expect AIM to help pose them.

ELLIPTIC MATHEMATICAL COLLABORATION
CURVES AND SYNTHESIS

Fermat’'s
MODULAR AUTOMORPHIC
FORMS Last ’ FORMS
Theorm

/ N

ALGEBRAIC Fermat’s Last Theorem was not just a

NUMBER _ .
THEORY problem—it was a catalyst that united

multiple fields and gave birth to modern
number theory.

49
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Summary NIRRT

® Large language models enable greater Al impact in

mathematical research.

® Three key characteristics distinguish mathematical

research from problem-solving, including long

reasoning, procedural rigor, and answer existence.

® We propose the Al mathematician system AIM, which
has achieved preliminary success on four research-level

mathematical problems, showing promising potential.

® In the future, Al will play a more proactive and

important role in mathematical research.




Our AIM is Al Mathematician!




