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AI and Scientific Research

l AI has significantly accelerated scientific progress.
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The Power of Math Research

l Mathematical research embodies both profound theoretical and 
practical value, representing the pinnacle of human intellect.
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The theoretical foundation 
for science and engineering.

In pursuit of truth and elegance 
in nature.

Analysis

Linear 
Algebra

Probability 
Theory

Calabi-Yau 
ManifoldsWhat sparks when AI meets mathematics?



Math4AI: A Critical Factor

l Mathematics and code are now key to advancing large models' 
reasoning capabilities.

4https://openai.com/index/learning-to-reason-with-llms ; DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. arXiv:2501.12948. 

DeepSeek-R1 gains deep reasoning via 
verifiable math-focused RL training.

o1: The first reasoning model trained 
on math/code tasks, showing across-

the-board improvements.



AI4Math: Approaching the Peak

l By 2025, top models are projected to score 145/150 on Gaokao.

5https://mp.weixin.qq.com/s/E1D_QA5lXwXRc6aSaU_zog?scene=1

Model Objective Questions  
(Text Input)

Single-choice 
Image Questions

Subjective 
Questions Total

Gemini 2.5 pro 68 0 77 145

Doubao-1.5-thinking-vision-pro 68 0 76 144

DeepSeek R1 68 / 76 144

o3 65 0 75 140

Qwen3-235b 68 / 71 139

hunyuan-t1-latest 68 / 68 136

Wenxin X1 Turbo 68 / 66 134

Note: This evaluation consists of three parts: objective questions (text input), Question 6 which is an image-based
single-choice question, and subjective questions. The objective questions (text input) section accounts for a total of
68 points, the image-based single-choice question is worth 5 points, and the subjective questions total 77 points.
The overall score is 150 points.

Lack of sufficient image understanding capabilities leads to point loss



l o4-mini achieves expert-level proficiency on frontier math problems.

AI4Math: Approaching the Peak

6https://www.scientificamerican.com/article/inside-the-secret-meeting-where-mathematicians-struggled-to-outsmart-ai/  ; https://epoch.ai/gradient-updates/is-ai-already-superhuman-on-frontiermath ; 
https://epoch.ai/gradient-updates/beyond-benchmark-scores-analysing-o3-mini-math-reasoning ; https://openai.com/index/introducing-o3-and-o4-mini/

FrontierMath

“I don’t want to add to the hysteria, but
in some ways these large language
models are already outperforming most
of our best graduate students in the
world.” -- Ken Ono

AIME: American Invitational 
Mathematics Examination



AIME: High School Competition

l The AIME dataset derives from a competition (AIME) for high school 
students that helps select the U.S. team for the IMO.

7https://artofproblemsolving.com/wiki/index.php/2025_AIME_I_Problems/Problem_3 ; https://zh.wikipedia.org/wiki/美国数学邀请赛

Problem Structure

• 15 progressively difficult 
problems

• Answers are integers 
from 0-999

Limitations

• Predetermined unique 
solutions

• Focuses primarily on 
”small” techniques



AIME: High School Competition

l SOTA models primarily train and test on verifiable practice problems 
and math competition questions, similar to AIME’s data distribution.
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• Problem：Find the sum of all integer 
bases b > 9 for which 17! is a divisor of 97!

• Complexity：Simple and no advanced 
concepts required

• Reasoning Length：Solvable within brief 
deductive steps

• Assessment Focus: Core emphasis on 
applied problem-solving techniques

DeepSeek-R1 successfully solves 
the first problem in AIME 2025



The Challenging FrontierMath

l Authored and endorsed by professional mathematicians (including 
Terence Tao), FrontierMath exhibits extremely high difficulty.

9Glazer et al., 2024. FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI. arXiv:2411.04872.

Core Features
• Authored by professional 

mathematicians
• Spans major modern 

mathematical branches
• Requires hours per 

problem for specialists

Limitations
• Predetermined solutions
• Complexity ceiling below 

research-grade problems



Competition v.s. Research
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Kakeya Set Conjecture in 3D
• 12 chapters with 125 pages of core arguments.

• Only the final proof is published, but the 
underlying reasoning is much more extensive.

Math research requires significantly 
longer and deeper reasoning.

Key 1: Long Reasoning



Competition v.s. Research
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Zero tolerance for errors. Verification is 
mandatory yet exceptionally costly

Case Validating Process Duration

Fermat’s Last 
Theorem

The initial proof was presented in 1993, and then a 
flaw was identified after scrutinized by top 
mathematicians. The revised proof was finally 
published in 1995.

~2 years

Poincaré 
Conjecture

The proof was released in three preprints, and was 
finally validated by the collaborative effort by 
geometers and topologists.

~4-5 years

A proof fragment of 
the 3D Kakeya Set 

Conjecture

Key 2: Procedural Rigor



Competition v.s. Research
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Competition problems have known and 
determined answers
The answers of research problems are 
unknown and undetermined

Gödel’s First Incompleteness Theorem: 
In any consistent formal system that is strong enough to express basic 
arithmetic, there will always be true statements that the system cannot 
prove. The system is inherently incomplete.

Gödel’s Second Incompleteness Theorem:

Such a system cannot prove its own consistency from within. To 
establish its consistency, we must rely on methods outside the system.Kurt Gödel

P(Q)
YES

NO
Halting Problem

Key 3: Answer Existence



AI4Math: Formal Proving

l Formal proof systems have evolved through decades of research, with 
institutions worldwide - including DeepSeek and ByteDance - actively 
advancing this field.

13https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/

Pros
• Provides certain symbolic 

automation
• Guarantees absolute rigor 

via machine verification

Cons
• Current formal tools faces 

severe performance 
bottlenecks

• They can not be applied to 
research level problems



AI4Math: Coding Agent

l Recent studies have begun exploring the potential of using large 
models to perform mathematical research tasks.

14https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/

• Origin: Launched by Google 
DeepMind on May 14, 2025

• Nature: An agent system 
specialized in algorithmic 
optimization

• Achievement: Demonstrated 
capacity for independent novel 
discoveries

• Limitation: Limited to 
problems amenable to code

AlphaEvolve



AIM: AI Mathematician

l AIM represents an important step towards automated math research
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• Short reasoning
• Rigor requirement 

is easily satisfied
• Known existance of 

the answer
• Deterministic

Competition

• Long reasoning
• Rigor requirement 

is hardly satisfied
• Unknown existance 

of the answer
• Indeterministic

Research



Overview of AIM

l An LLM-powered agent system specially designed for math research, 
consisting of three agents (Explorer, Verifier, Refiner) and a Memory.

Saves 
verified 
lemmas

Proposes 
the direction 
and proofs

Validate the 
proofs

Revise wrong 
proofs

16



Long Reasoning: Explore & Memory

l The agents within AIM are tasked with exploring the original problem 
and documenting their discoveries as lemmas during the process. By 
iterating this procedure, the exploration progresses further, ultimately 
achieving problem resolution.

17



Validation: Pessimistic Verification

l Each new discovery during exploration is repeatedly verified multiple 
times; if any single verification detects an error, the discovery is 
deemed incorrect.

q Conducting multiple 
rounds of self-checking 
can effectively identify 
issues

q Erroneous proofs can be 
analyzed and corrected

q Correct proof conclusions 
are eventually stored in 
memory

18



Agent Design in AIM

l All three agents are guided by meticulously designed prompts, 
supported by logical processing methods to facilitate collaboration.

19

Define 
behavior of 

an agent

Prompt Example

Including task goal, reasoning direction, 
output format, etc.



Agent Design in AIM

l All three agents are guided by meticulously designed prompts, 
supported by logical processing methods to facilitate collaboration.
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Define 
behavior of 

an agent

Description 
of the 

problem

Prompt Example

Information directly related to the task, for 
each agent it could be:
• Explorer: the statement of the final goal
• Verifier: a conjecture and its proof
• Refiner: a flawed conjecture, proof, and 

the feedback from the verifier



Agent Design in AIM

l All three agents are guided by meticulously designed prompts, 
supported by logical processing methods to facilitate collaboration.

21

Define 
behavior of 

an agent

Description 
of the 

problem

Infomation 
in memory

Prompt Example

Formatted exploration history in memory



Memory Design in AIM

l AIM parses and logs four categories of data from the model's outputs, 
with a portion of it being structured and fed into later agents’ 
inputs.
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Memory type, e.g., 
context, lemma,  
conjecture, etc

Textual description 
of the memory 

content

A complete proof 
to this lemma Other metadata of this memory, 

e.g., solved tag, num reviews, etc



Lemma Graph

l By arranging the lemmas according to their mutual dependencies, the 
exploration process can be structured into a lemma graph—essentially 
a directed graph that starts from the initial assumptions.

This brings two critical 
improvements:

q Easy identification of 
actural proof path.

q Quantitative assessment 
of each lemmas. (By 
calculating the 
derivations of each 
node in the graph.)

23

Example of Lemma Graph



Dynamic Verification in Lemma Graph

l By dynamically allocating verification resources by the importance of 
each lemmas, we can further guarantee the reliability while increasing 
its efficiency.

24



Overview of Experiments

l AIM is applied to address four mathematical theory problems, 
including three settled problems and one open problem.

25

DeepSeek-R1

DeepSeek-R1

o4-mini

DeepSeek-R1 
and o4-mini, 
each conducted 
one experiment

Settled 
Problem

Open 
Problem



Quantum Algorithm Problem
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The Linear Combination of Hamiltonian
Simulation (LCHS) method is an efficient
approach in scientific computing. Its main idea
is to transform non-unitary dynamical
problems into linear combinations of
Hamiltonian simulation.

The Black-Scholes-Merton (BSM) model is the
fundamental mathematical framework used
for pricing European options in finance.

Objective: To simulate the BSM model using the LCHS 
method, design corresponding quantum algorithms, 

and analyze the complexity of the algorithms.

AIM correctly applies this method, providing a detailed proof and basically solving this problem



Quantum Algorithm Problem

27

System 
input

Explanation 
of the LCHS 

lemma

Explanation 
of the BSM 

model 

Objective



Quantum Algorithm Problem

l AIM solves the problem by transforming the BSM equation into a heat 
equation, applying the LCHS lemma to reformulate the problem, and 
proposing a quantum algorithm. The core steps are as follows:

PDE transformation 
and spatial 

discretization

Operator 
decomposition and 

integral discretization 

Quantum algorithm 
implementation and 
complexity analysis

Transform the BSM equation into the standard heat equation 
using variable substitution, and discretize the spatial variables.

Apply the LCHS lemma to decompose the solution operator of 
the heat equation into a continuous linear combination of 
unitary operators. Then, truncate and approximate the 
continuous integral and discretize it.

Design quantum algorithms using the linear combination of 
unitaries (LCU) and Hamiltonian simulation techniques, and 
calculate the complexity.

1

2

3

28



Quantum Algorithm Problem

AIM explores step by step through a seq. of progressively built lemmas.
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Lemma 1: First, AIM transforms the BSM equation into a heat equation, then discretizes the spatial 
variables, and verifies semi-definiteness. Further, AIM converts it into a form that can utilize the 
LCHS lemma, with a detailed proof.

Transform the BSM equation 
into a heat equation

Discretize
spatial 

variables



Quantum Algorithm Problem

AIM explores step by step through a seq. of progressively built lemmas.

30

Lemma 2: AIM analyzes 
truncation errors and 
determines discrete 
intervals, laying the 
foundation for 
constructing quantum 
algorithms.

Analyze 
truncation 
error

Determine 
discrete 
intervals

Overall error 
analysis



Quantum Algorithm Problem

AIM explores step by step through a seq. of progressively built lemmas.
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AIM combines previous lemmas to construct a quantum algorithm using Hamiltonian simulation 
and the linear combination of unitary operators (LCU), then calculates its complexity. There are 
some errors in the complexity calculation, but the core methods are correct.

Based on the first lemma, use the LCHS 
lemma to transform into a continuous 

integral of unitary operators

Transform the solution of the equation into a 
linear combination of unitary operators

Utilize Hamiltonian simulation algorithms

Complexity 
analysis



Homogenization Problem

l Problem Description: The homogenization problem for transmission systems 
requires analyzing the properties of equations and their corresponding solutions 
under specific physical scale limits. The goal is to ultimately prove the error 
estimation of solutions, which remains an open problem.
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• AIM correctly applied mathematical theorems 
and analytical derivations, providing some 
accurate conclusions and approaches. 

• The results are of guiding significance for 
human mathematicians conducting this 
research.

Correct asymptotic expansion approaches 
and exploration of conclusions.



Human-AI Collaboration

l Objective: Solve the Homogenization Problem with minimal human 
input through human-AI collaboration.

33

Math 
Problem AIM Proof

Math 
Problem Proof

AIM

Human



Human-AI Collaboration

l Subproblem decomposition of the homogenization problem:

34

Steps Hardness Current Status

Two-Scale Expansion Easy Humans handle the task

Cell Problem and 
Homogenization Equation Medium A suitable cell problem is manually constructed, and 

the homogenized equation is derived by hand

Existence and Uniqueness Hard With minimal hints, AIM discovers the correct 
theorem and proof; humans fill in some details

Ellipticity of Operator Medium With minimal hints, AIM provides a largely complete 
proof; humans refine some details

Error Estimation and 
Control Hard

With minimal hints, AIM presents the correct proof 
approach and some steps, which, after human 
adjustments, led to a complete proof process

Regularity of Cell Problem Hard With minimal hints, AIM provides the complete proof



Background：Cell Problem

35

In the derivation process of the homogenization equation, the
construction of the Cell Problem is a necessary technical step.
Specifically, we manually constructed such a Cell Problem as
described in the following equation.



Subproblem：Regularity of Cell Problem

36

Difference
Quotient

Schauder 
Theory

Galerkin 
Method

AIM attempted to derive 
the error estimation

Manual review of the 
estimation revealed that 
AIM relied on the 
following properties 
without providing proofs

We analyzed that this property 
is likely correct and applied AIM 
to prove the regularity



Subproblem：Regularity of Cell Problem

Schauder 
Theory

AIM was utilized to 
complete the 
schauder theory 
related lemmas.
These contents are 
input into the model 
as the "context" 
section served as a 
methodological guide 
for subsequent 
regularity proofs.

37

We adjusted the 
lemmas from the 
schauder theory 
method into a form 
suitable for the 
equations of the 
Cell Problem.



Subproblem：Regularity of Cell Problem

l We transform the problem into the proof of the following theorem.

38

We instruct AIM to 
use schauder theory 
methods to prove 
this theorem. Based 
on feedback from 
experimental 
results, we 
iteratively split the 
problem and 
ultimately complete 
the proof.

We adjusted the 
lemmas from the 
schauder theory 
method into a form 
suitable for the 
equations of the 
Cell Problem.



Subproblem：Regularity of Cell Problem

l Specifically, the entire problem is divided into the following three parts. AIM 
progressively completes the proof details for each part. After iterations, AIM provided 
a process with a high level of completeness and ultimately completed the proof.

Perturbation of 
the Equation

Morrey’s Esitmate
Bootstrap 
Ananlysis

Hölder
Regularity

1

2

3

39

is

Hölder continuous

Beyond expectations



Final Conclusion
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• The proofs of the subproblems have been preliminarily verified as 
correct by a mathematics professor. 

• We are currently reorganizing them into a format more suitable for 
submission to mathematical journals, followed by a more thorough 
internal review before final submission.

Finally, based on the regularity obtained from the proof, we 
completed the error control of the homogenization limit.

Here is the error control conclusion between the solution of the 
original equation and the solution of the homogenized equation.



AIM Online Demo

l We have deployed a web frontend of AIM systems and invited some 
domain experts to use it and evaluate its performance.

41

Homepage

Project page



Some User Feedbacks of AIM
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A hard problem on symplectic foliation. The 
user omitted a condition in the query, and 
AIM provides a valid counter example for this 
problem.

AIM successfully addressed some 
group classification, and provides a 
detailed proof to it.

AIM failed to directly adress a research 
level problem. It exceeded the 
maximum complexity that can be 
handled by AIM.

😄

😄

☹



Limitation 1: Redundant Exploration

l Currently, AIM often explores in the same direction, presenting a 
series of similar conjectures and identical lemmas, which increases 
costs, reduces efficiency, and limits the performance ceiling.

43

Three Similar Lemmas

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8



Limitation 2: Insufficient Understanding of 
Mathematical Settings
l The current AIM has limited ability to understand lengthy 

mathematical setups and background conditions, which can lead to 
errors in the agent's analysis process.

44

The lack of understanding of the boundaries of the unit cell here has led to 
conclusions that do not align with the actual situation



Limitation 3: Lack of Derivation Details

l AIM tends to "skip steps”, which is detrimental to both manual and 
automated verification of the proof and may lead to incorrect proofs.

45

The specific derivation 
and analysis process of 
the ODE system is not 
provided here, but the 
conclusion is correct.



Limitation 4: Rising Demand, Limited Supply

l Actual user demands exhibit considerable diversity and extend 
substantially beyond the current operational scope of AIM.

46

User Expectations AIM Capabilities

Interact with minimal input Provide a relatively complete 
problem description

Chinese-language input English-language input is more 
effective

Zero tolerance for errors Is not yet error-free

Capable of solving any problem Has its own limitations

…… ……



Outlook: A Bold Bet on Natural Language

l For the first time, large language models performed on a par with 
gold medallists in the International Mathematical Olympiad (IMO).

47https://www.nature.com/articles/d41586-025-02343-x



Auxiliary Proof + Idea Validation + Open Exploration

Outlook: Assistive to Proactive

48

Ultimate Goal



Outlook: Pose New Mathematical Problems

l Good problems drive mathematics; we expect AIM to help pose them.
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Fermat’s Last Theorem was not just a 
problem—it was a catalyst that united 
multiple fields and gave birth to modern 
number theory.

Fermat’s
Last 

Theorm

ELLIPTIC 
CURVES

MODULAR 
FORMS

ALGEBRAIC 
NUMBER 
THEORY

MATHEMATICAL COLLABORATION 
AND SYNTHESIS

AUTOMORPHIC 
FORMS



Summary

l Large language models enable greater AI impact in 

mathematical research.

l Three key characteristics distinguish mathematical 

research from problem-solving, including long 

reasoning, procedural rigor, and answer existence.

l We propose the AI mathematician system AIM, which 

has achieved preliminary success on four research-level 
mathematical problems, showing promising potential.

l In the future, AI will play a more proactive and 

important role in mathematical research.
50

Tech. Report

Code



Our AIM is AI Mathematician!


